1 | /* |
2 | wiring.c - Partial implementation of the Wiring API for the ATmega8. |
3 | Part of Arduino - http://www.arduino.cc/ |
4 | |
5 | Copyright (c) 2005-2006 David A. Mellis |
6 | |
7 | This library is free software; you can redistribute it and/or |
8 | modify it under the terms of the GNU Lesser General Public |
9 | License as published by the Free Software Foundation; either |
10 | version 2.1 of the License, or (at your option) any later version. |
11 | |
12 | This library is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
15 | Lesser General Public License for more details. |
16 | |
17 | You should have received a copy of the GNU Lesser General |
18 | Public License along with this library; if not, write to the |
19 | Free Software Foundation, Inc., 59 Temple Place, Suite 330, |
20 | Boston, MA 02111-1307 USA |
21 | */ |
22 |
|
23 | #include "wiring_private.h" |
24 |
|
25 | // the prescaler is set so that timer0 ticks every 64 clock cycles, and the |
26 | // the overflow handler is called every 256 ticks. |
27 | #define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256)) |
28 |
|
29 | // the whole number of milliseconds per timer0 overflow |
30 | #define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000) |
31 |
|
32 | // the fractional number of milliseconds per timer0 overflow. we shift right |
33 | // by three to fit these numbers into a byte. (for the clock speeds we care |
34 | // about - 8 and 16 MHz - this doesn't lose precision.) |
35 | #define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3) |
36 | #define FRACT_MAX (1000 >> 3) |
37 |
|
38 | volatile unsigned long timer0_overflow_count = 0; |
39 | volatile unsigned long timer0_millis = 0; |
40 | static unsigned char timer0_fract = 0; |
41 |
|
42 | #if defined(TIM0_OVF_vect) |
43 | ISR(TIM0_OVF_vect) |
44 | #else |
45 | ISR(TIMER0_OVF_vect) |
46 | #endif |
47 | { |
48 | // copy these to local variables so they can be stored in registers |
49 | // (volatile variables must be read from memory on every access) |
50 | unsigned long m = timer0_millis; |
51 | unsigned char f = timer0_fract; |
52 |
|
53 | m += MILLIS_INC; |
54 | f += FRACT_INC; |
55 | if (f >= FRACT_MAX) { |
56 | f -= FRACT_MAX; |
57 | m += 1; |
58 | } |
59 |
|
60 | timer0_fract = f; |
61 | timer0_millis = m; |
62 | timer0_overflow_count++; |
63 | } |
64 |
|
65 | unsigned long millis() |
66 | { |
67 | unsigned long m; |
68 | uint8_t oldSREG = SREG; |
69 |
|
70 | // disable interrupts while we read timer0_millis or we might get an |
71 | // inconsistent value (e.g. in the middle of a write to timer0_millis) |
72 | cli(); |
73 | m = timer0_millis; |
74 | SREG = oldSREG; |
75 |
|
76 | return m; |
77 | } |
78 |
|
79 | unsigned long micros() { |
80 | unsigned long m; |
81 | uint8_t oldSREG = SREG, t; |
82 | |
83 | cli(); |
84 | m = timer0_overflow_count; |
85 | #if defined(TCNT0) |
86 | t = TCNT0; |
87 | #elif defined(TCNT0L) |
88 | t = TCNT0L; |
89 | #else |
90 | #error TIMER 0 not defined |
91 | #endif |
92 |
|
93 | #ifdef TIFR0 |
94 | if ((TIFR0 & _BV(TOV0)) && (t < 255)) |
95 | m++; |
96 | #else |
97 | if ((TIFR & _BV(TOV0)) && (t < 255)) |
98 | m++; |
99 | #endif |
100 |
|
101 | SREG = oldSREG; |
102 | |
103 | return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond()); |
104 | } |
105 |
|
106 | void delay(unsigned long ms) |
107 | { |
108 | uint32_t start = micros(); |
109 |
|
110 | while (ms > 0) { |
111 | yield(); |
112 | while ( ms > 0 && (micros() - start) >= 1000) { |
113 | ms--; |
114 | start += 1000; |
115 | } |
116 | } |
117 | } |
118 |
|
119 | /* Delay for the given number of microseconds. Assumes a 1, 8, 12, 16, 20 or 24 MHz clock. */ |
120 | void delayMicroseconds(unsigned int us) |
121 | { |
122 | // call = 4 cycles + 2 to 4 cycles to init us(2 for constant delay, 4 for variable) |
123 |
|
124 | // calling avrlib's delay_us() function with low values (e.g. 1 or |
125 | // 2 microseconds) gives delays longer than desired. |
126 | //delay_us(us); |
127 | #if F_CPU >= 24000000L |
128 | // for the 24 MHz clock for the aventurous ones, trying to overclock |
129 |
|
130 | // zero delay fix |
131 | if (!us) return; // = 3 cycles, (4 when true) |
132 |
|
133 | // the following loop takes a 1/6 of a microsecond (4 cycles) |
134 | // per iteration, so execute it six times for each microsecond of |
135 | // delay requested. |
136 | us *= 6; // x6 us, = 7 cycles |
137 |
|
138 | // account for the time taken in the preceeding commands. |
139 | // we just burned 22 (24) cycles above, remove 5, (5*4=20) |
140 | // us is at least 6 so we can substract 5 |
141 | us -= 5; //=2 cycles |
142 |
|
143 | #elif F_CPU >= 20000000L |
144 | // for the 20 MHz clock on rare Arduino boards |
145 |
|
146 | // for a one-microsecond delay, simply return. the overhead |
147 | // of the function call takes 18 (20) cycles, which is 1us |
148 | __asm__ __volatile__ ( |
149 | "nop" "\n\t" |
150 | "nop" "\n\t" |
151 | "nop" "\n\t" |
152 | "nop"); //just waiting 4 cycles |
153 | if (us <= 1) return; // = 3 cycles, (4 when true) |
154 |
|
155 | // the following loop takes a 1/5 of a microsecond (4 cycles) |
156 | // per iteration, so execute it five times for each microsecond of |
157 | // delay requested. |
158 | us = (us << 2) + us; // x5 us, = 7 cycles |
159 |
|
160 | // account for the time taken in the preceeding commands. |
161 | // we just burned 26 (28) cycles above, remove 7, (7*4=28) |
162 | // us is at least 10 so we can substract 7 |
163 | us -= 7; // 2 cycles |
164 |
|
165 | #elif F_CPU >= 16000000L |
166 | // for the 16 MHz clock on most Arduino boards |
167 |
|
168 | // for a one-microsecond delay, simply return. the overhead |
169 | // of the function call takes 14 (16) cycles, which is 1us |
170 | if (us <= 1) return; // = 3 cycles, (4 when true) |
171 |
|
172 | // the following loop takes 1/4 of a microsecond (4 cycles) |
173 | // per iteration, so execute it four times for each microsecond of |
174 | // delay requested. |
175 | us <<= 2; // x4 us, = 4 cycles |
176 |
|
177 | // account for the time taken in the preceeding commands. |
178 | // we just burned 19 (21) cycles above, remove 5, (5*4=20) |
179 | // us is at least 8 so we can substract 5 |
180 | us -= 5; // = 2 cycles, |
181 |
|
182 | #elif F_CPU >= 12000000L |
183 | // for the 12 MHz clock if somebody is working with USB |
184 |
|
185 | // for a 1 microsecond delay, simply return. the overhead |
186 | // of the function call takes 14 (16) cycles, which is 1.5us |
187 | if (us <= 1) return; // = 3 cycles, (4 when true) |
188 |
|
189 | // the following loop takes 1/3 of a microsecond (4 cycles) |
190 | // per iteration, so execute it three times for each microsecond of |
191 | // delay requested. |
192 | us = (us << 1) + us; // x3 us, = 5 cycles |
193 |
|
194 | // account for the time taken in the preceeding commands. |
195 | // we just burned 20 (22) cycles above, remove 5, (5*4=20) |
196 | // us is at least 6 so we can substract 5 |
197 | us -= 5; //2 cycles |
198 |
|
199 | #elif F_CPU >= 8000000L |
200 | // for the 8 MHz internal clock |
201 |
|
202 | // for a 1 and 2 microsecond delay, simply return. the overhead |
203 | // of the function call takes 14 (16) cycles, which is 2us |
204 | if (us <= 2) return; // = 3 cycles, (4 when true) |
205 |
|
206 | // the following loop takes 1/2 of a microsecond (4 cycles) |
207 | // per iteration, so execute it twice for each microsecond of |
208 | // delay requested. |
209 | us <<= 1; //x2 us, = 2 cycles |
210 |
|
211 | // account for the time taken in the preceeding commands. |
212 | // we just burned 17 (19) cycles above, remove 4, (4*4=16) |
213 | // us is at least 6 so we can substract 4 |
214 | us -= 4; // = 2 cycles |
215 |
|
216 | #else |
217 | // for the 1 MHz internal clock (default settings for common Atmega microcontrollers) |
218 |
|
219 | // the overhead of the function calls is 14 (16) cycles |
220 | if (us <= 16) return; //= 3 cycles, (4 when true) |
221 | if (us <= 25) return; //= 3 cycles, (4 when true), (must be at least 25 if we want to substract 22) |
222 |
|
223 | // compensate for the time taken by the preceeding and next commands (about 22 cycles) |
224 | us -= 22; // = 2 cycles |
225 | // the following loop takes 4 microseconds (4 cycles) |
226 | // per iteration, so execute it us/4 times |
227 | // us is at least 4, divided by 4 gives us 1 (no zero delay bug) |
228 | us >>= 2; // us div 4, = 4 cycles |
229 | |
230 |
|
231 | #endif |
232 |
|
233 | // busy wait |
234 | __asm__ __volatile__ ( |
235 | "1: sbiw %0,1" "\n\t" // 2 cycles |
236 | "brne 1b" : "=w" (us) : "0" (us) // 2 cycles |
237 | ); |
238 | // return = 4 cycles |
239 | } |
240 |
|
241 | void init() |
242 | { |
243 | // this needs to be called before setup() or some functions won't |
244 | // work there |
245 | sei(); |
246 | |
247 | // on the ATmega168, timer 0 is also used for fast hardware pwm |
248 | // (using phase-correct PWM would mean that timer 0 overflowed half as often |
249 | // resulting in different millis() behavior on the ATmega8 and ATmega168) |
250 | #if defined(TCCR0A) && defined(WGM01) |
251 | sbi(TCCR0A, WGM01); |
252 | sbi(TCCR0A, WGM00); |
253 | #endif |
254 |
|
255 | // set timer 0 prescale factor to 64 |
256 | #if defined(__AVR_ATmega128__) |
257 | // CPU specific: different values for the ATmega128 |
258 | sbi(TCCR0, CS02); |
259 | #elif defined(TCCR0) && defined(CS01) && defined(CS00) |
260 | // this combination is for the standard atmega8 |
261 | sbi(TCCR0, CS01); |
262 | sbi(TCCR0, CS00); |
263 | #elif defined(TCCR0B) && defined(CS01) && defined(CS00) |
264 | // this combination is for the standard 168/328/1280/2560 |
265 | sbi(TCCR0B, CS01); |
266 | sbi(TCCR0B, CS00); |
267 | #elif defined(TCCR0A) && defined(CS01) && defined(CS00) |
268 | // this combination is for the __AVR_ATmega645__ series |
269 | sbi(TCCR0A, CS01); |
270 | sbi(TCCR0A, CS00); |
271 | #else |
272 | #error Timer 0 prescale factor 64 not set correctly |
273 | #endif |
274 |
|
275 | // enable timer 0 overflow interrupt |
276 | #if defined(TIMSK) && defined(TOIE0) |
277 | sbi(TIMSK, TOIE0); |
278 | #elif defined(TIMSK0) && defined(TOIE0) |
279 | sbi(TIMSK0, TOIE0); |
280 | #else |
281 | #error Timer 0 overflow interrupt not set correctly |
282 | #endif |
283 |
|
284 | // timers 1 and 2 are used for phase-correct hardware pwm |
285 | // this is better for motors as it ensures an even waveform |
286 | // note, however, that fast pwm mode can achieve a frequency of up |
287 | // 8 MHz (with a 16 MHz clock) at 50% duty cycle |
288 |
|
289 | #if defined(TCCR1B) && defined(CS11) && defined(CS10) |
290 | TCCR1B = 0; |
291 |
|
292 | // set timer 1 prescale factor to 64 |
293 | sbi(TCCR1B, CS11); |
294 | #if F_CPU >= 8000000L |
295 | sbi(TCCR1B, CS10); |
296 | #endif |
297 | #elif defined(TCCR1) && defined(CS11) && defined(CS10) |
298 | sbi(TCCR1, CS11); |
299 | #if F_CPU >= 8000000L |
300 | sbi(TCCR1, CS10); |
301 | #endif |
302 | #endif |
303 | // put timer 1 in 8-bit phase correct pwm mode |
304 | #if defined(TCCR1A) && defined(WGM10) |
305 | sbi(TCCR1A, WGM10); |
306 | #endif |
307 |
|
308 | // set timer 2 prescale factor to 64 |
309 | #if defined(TCCR2) && defined(CS22) |
310 | sbi(TCCR2, CS22); |
311 | #elif defined(TCCR2B) && defined(CS22) |
312 | sbi(TCCR2B, CS22); |
313 | //#else |
314 | // Timer 2 not finished (may not be present on this CPU) |
315 | #endif |
316 |
|
317 | // configure timer 2 for phase correct pwm (8-bit) |
318 | #if defined(TCCR2) && defined(WGM20) |
319 | sbi(TCCR2, WGM20); |
320 | #elif defined(TCCR2A) && defined(WGM20) |
321 | sbi(TCCR2A, WGM20); |
322 | //#else |
323 | // Timer 2 not finished (may not be present on this CPU) |
324 | #endif |
325 |
|
326 | #if defined(TCCR3B) && defined(CS31) && defined(WGM30) |
327 | sbi(TCCR3B, CS31); // set timer 3 prescale factor to 64 |
328 | sbi(TCCR3B, CS30); |
329 | sbi(TCCR3A, WGM30); // put timer 3 in 8-bit phase correct pwm mode |
330 | #endif |
331 |
|
332 | #if defined(TCCR4A) && defined(TCCR4B) && defined(TCCR4D) /* beginning of timer4 block for 32U4 and similar */ |
333 | sbi(TCCR4B, CS42); // set timer4 prescale factor to 64 |
334 | sbi(TCCR4B, CS41); |
335 | sbi(TCCR4B, CS40); |
336 | sbi(TCCR4D, WGM40); // put timer 4 in phase- and frequency-correct PWM mode |
337 | sbi(TCCR4A, PWM4A); // enable PWM mode for comparator OCR4A |
338 | sbi(TCCR4C, PWM4D); // enable PWM mode for comparator OCR4D |
339 | #else /* beginning of timer4 block for ATMEGA1280 and ATMEGA2560 */ |
340 | #if defined(TCCR4B) && defined(CS41) && defined(WGM40) |
341 | sbi(TCCR4B, CS41); // set timer 4 prescale factor to 64 |
342 | sbi(TCCR4B, CS40); |
343 | sbi(TCCR4A, WGM40); // put timer 4 in 8-bit phase correct pwm mode |
344 | #endif |
345 | #endif /* end timer4 block for ATMEGA1280/2560 and similar */ |
346 |
|
347 | #if defined(TCCR5B) && defined(CS51) && defined(WGM50) |
348 | sbi(TCCR5B, CS51); // set timer 5 prescale factor to 64 |
349 | sbi(TCCR5B, CS50); |
350 | sbi(TCCR5A, WGM50); // put timer 5 in 8-bit phase correct pwm mode |
351 | #endif |
352 |
|
353 | #if defined(ADCSRA) |
354 | // set a2d prescaler so we are inside the desired 50-200 KHz range. |
355 | #if F_CPU >= 16000000 // 16 MHz / 128 = 125 KHz |
356 | sbi(ADCSRA, ADPS2); |
357 | sbi(ADCSRA, ADPS1); |
358 | sbi(ADCSRA, ADPS0); |
359 | #elif F_CPU >= 8000000 // 8 MHz / 64 = 125 KHz |
360 | sbi(ADCSRA, ADPS2); |
361 | sbi(ADCSRA, ADPS1); |
362 | cbi(ADCSRA, ADPS0); |
363 | #elif F_CPU >= 4000000 // 4 MHz / 32 = 125 KHz |
364 | sbi(ADCSRA, ADPS2); |
365 | cbi(ADCSRA, ADPS1); |
366 | sbi(ADCSRA, ADPS0); |
367 | #elif F_CPU >= 2000000 // 2 MHz / 16 = 125 KHz |
368 | sbi(ADCSRA, ADPS2); |
369 | cbi(ADCSRA, ADPS1); |
370 | cbi(ADCSRA, ADPS0); |
371 | #elif F_CPU >= 1000000 // 1 MHz / 8 = 125 KHz |
372 | cbi(ADCSRA, ADPS2); |
373 | sbi(ADCSRA, ADPS1); |
374 | sbi(ADCSRA, ADPS0); |
375 | #else // 128 kHz / 2 = 64 KHz -> This is the closest you can get, the prescaler is 2 |
376 | cbi(ADCSRA, ADPS2); |
377 | cbi(ADCSRA, ADPS1); |
378 | sbi(ADCSRA, ADPS0); |
379 | #endif |
380 | // enable a2d conversions |
381 | sbi(ADCSRA, ADEN); |
382 | #endif |
383 |
|
384 | // the bootloader connects pins 0 and 1 to the USART; disconnect them |
385 | // here so they can be used as normal digital i/o; they will be |
386 | // reconnected in Serial.begin() |
387 | #if defined(UCSRB) |
388 | UCSRB = 0; |
389 | #elif defined(UCSR0B) |
390 | UCSR0B = 0; |
391 | #endif |
392 | } |
393 |
|