| 1 | /* |
| 2 | HardwareSerial.cpp - Hardware serial library for Wiring |
| 3 | Copyright (c) 2006 Nicholas Zambetti. All right reserved. |
| 4 | |
| 5 | This library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | This library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with this library; if not, write to the Free Software |
| 17 | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| 18 | |
| 19 | Modified 23 November 2006 by David A. Mellis |
| 20 | Modified 28 September 2010 by Mark Sproul |
| 21 | Modified 14 August 2012 by Alarus |
| 22 | Modified 3 December 2013 by Matthijs Kooijman |
| 23 | */ |
| 24 |
|
| 25 | #include <stdlib.h> |
| 26 | #include <stdio.h> |
| 27 | #include <string.h> |
| 28 | #include <inttypes.h> |
| 29 | #include <util/atomic.h> |
| 30 | #include "Arduino.h" |
| 31 |
|
| 32 | #include "HardwareSerial.h" |
| 33 | #include "HardwareSerial_private.h" |
| 34 |
|
| 35 | // this next line disables the entire HardwareSerial.cpp, |
| 36 | // this is so I can support Attiny series and any other chip without a uart |
| 37 | #if defined(HAVE_HWSERIAL0) || defined(HAVE_HWSERIAL1) || defined(HAVE_HWSERIAL2) || defined(HAVE_HWSERIAL3) |
| 38 |
|
| 39 | // SerialEvent functions are weak, so when the user doesn't define them, |
| 40 | // the linker just sets their address to 0 (which is checked below). |
| 41 | // The Serialx_available is just a wrapper around Serialx.available(), |
| 42 | // but we can refer to it weakly so we don't pull in the entire |
| 43 | // HardwareSerial instance if the user doesn't also refer to it. |
| 44 | #if defined(HAVE_HWSERIAL0) |
| 45 | void serialEvent() __attribute__((weak)); |
| 46 | bool Serial0_available() __attribute__((weak)); |
| 47 | #endif |
| 48 |
|
| 49 | #if defined(HAVE_HWSERIAL1) |
| 50 | void serialEvent1() __attribute__((weak)); |
| 51 | bool Serial1_available() __attribute__((weak)); |
| 52 | #endif |
| 53 |
|
| 54 | #if defined(HAVE_HWSERIAL2) |
| 55 | void serialEvent2() __attribute__((weak)); |
| 56 | bool Serial2_available() __attribute__((weak)); |
| 57 | #endif |
| 58 |
|
| 59 | #if defined(HAVE_HWSERIAL3) |
| 60 | void serialEvent3() __attribute__((weak)); |
| 61 | bool Serial3_available() __attribute__((weak)); |
| 62 | #endif |
| 63 |
|
| 64 | void serialEventRun(void) |
| 65 | { |
| 66 | #if defined(HAVE_HWSERIAL0) |
| 67 | if (Serial0_available && serialEvent && Serial0_available()) serialEvent(); |
| 68 | #endif |
| 69 | #if defined(HAVE_HWSERIAL1) |
| 70 | if (Serial1_available && serialEvent1 && Serial1_available()) serialEvent1(); |
| 71 | #endif |
| 72 | #if defined(HAVE_HWSERIAL2) |
| 73 | if (Serial2_available && serialEvent2 && Serial2_available()) serialEvent2(); |
| 74 | #endif |
| 75 | #if defined(HAVE_HWSERIAL3) |
| 76 | if (Serial3_available && serialEvent3 && Serial3_available()) serialEvent3(); |
| 77 | #endif |
| 78 | } |
| 79 |
|
| 80 | // macro to guard critical sections when needed for large TX buffer sizes |
| 81 | #if (SERIAL_TX_BUFFER_SIZE>256) |
| 82 | #define TX_BUFFER_ATOMIC ATOMIC_BLOCK(ATOMIC_RESTORESTATE) |
| 83 | #else |
| 84 | #define TX_BUFFER_ATOMIC |
| 85 | #endif |
| 86 |
|
| 87 | // Actual interrupt handlers ////////////////////////////////////////////////////////////// |
| 88 |
|
| 89 | void HardwareSerial::_tx_udr_empty_irq(void) |
| 90 | { |
| 91 | // If interrupts are enabled, there must be more data in the output |
| 92 | // buffer. Send the next byte |
| 93 | unsigned char c = _tx_buffer[_tx_buffer_tail]; |
| 94 | _tx_buffer_tail = (_tx_buffer_tail + 1) % SERIAL_TX_BUFFER_SIZE; |
| 95 |
|
| 96 | *_udr = c; |
| 97 |
|
| 98 | // clear the TXC bit -- "can be cleared by writing a one to its bit |
| 99 | // location". This makes sure flush() won't return until the bytes |
| 100 | // actually got written. Other r/w bits are preserved, and zeroes |
| 101 | // written to the rest. |
| 102 |
|
| 103 | #ifdef MPCM0 |
| 104 | *_ucsra = ((*_ucsra) & ((1 << U2X0) | (1 << MPCM0))) | (1 << TXC0); |
| 105 | #else |
| 106 | *_ucsra = ((*_ucsra) & ((1 << U2X0) | (1 << TXC0))); |
| 107 | #endif |
| 108 |
|
| 109 | if (_tx_buffer_head == _tx_buffer_tail) { |
| 110 | // Buffer empty, so disable interrupts |
| 111 | cbi(*_ucsrb, UDRIE0); |
| 112 | } |
| 113 | } |
| 114 |
|
| 115 | // Public Methods ////////////////////////////////////////////////////////////// |
| 116 |
|
| 117 | void HardwareSerial::begin(unsigned long baud, byte config) |
| 118 | { |
| 119 | // Try u2x mode first |
| 120 | uint16_t baud_setting = (F_CPU / 4 / baud - 1) / 2; |
| 121 | *_ucsra = 1 << U2X0; |
| 122 |
|
| 123 | // hardcoded exception for 57600 for compatibility with the bootloader |
| 124 | // shipped with the Duemilanove and previous boards and the firmware |
| 125 | // on the 8U2 on the Uno and Mega 2560. Also, The baud_setting cannot |
| 126 | // be > 4095, so switch back to non-u2x mode if the baud rate is too |
| 127 | // low. |
| 128 | if (((F_CPU == 16000000UL) && (baud == 57600)) || (baud_setting >4095)) |
| 129 | { |
| 130 | *_ucsra = 0; |
| 131 | baud_setting = (F_CPU / 8 / baud - 1) / 2; |
| 132 | } |
| 133 |
|
| 134 | // assign the baud_setting, a.k.a. ubrr (USART Baud Rate Register) |
| 135 | *_ubrrh = baud_setting >> 8; |
| 136 | *_ubrrl = baud_setting; |
| 137 |
|
| 138 | _written = false; |
| 139 |
|
| 140 | //set the data bits, parity, and stop bits |
| 141 | #if defined(__AVR_ATmega8__) |
| 142 | config |= 0x80; // select UCSRC register (shared with UBRRH) |
| 143 | #endif |
| 144 | *_ucsrc = config; |
| 145 | |
| 146 | sbi(*_ucsrb, RXEN0); |
| 147 | sbi(*_ucsrb, TXEN0); |
| 148 | sbi(*_ucsrb, RXCIE0); |
| 149 | cbi(*_ucsrb, UDRIE0); |
| 150 | } |
| 151 |
|
| 152 | void HardwareSerial::end() |
| 153 | { |
| 154 | // wait for transmission of outgoing data |
| 155 | flush(); |
| 156 |
|
| 157 | cbi(*_ucsrb, RXEN0); |
| 158 | cbi(*_ucsrb, TXEN0); |
| 159 | cbi(*_ucsrb, RXCIE0); |
| 160 | cbi(*_ucsrb, UDRIE0); |
| 161 | |
| 162 | // clear any received data |
| 163 | _rx_buffer_head = _rx_buffer_tail; |
| 164 | } |
| 165 |
|
| 166 | int HardwareSerial::available(void) |
| 167 | { |
| 168 | return ((unsigned int)(SERIAL_RX_BUFFER_SIZE + _rx_buffer_head - _rx_buffer_tail)) % SERIAL_RX_BUFFER_SIZE; |
| 169 | } |
| 170 |
|
| 171 | int HardwareSerial::peek(void) |
| 172 | { |
| 173 | if (_rx_buffer_head == _rx_buffer_tail) { |
| 174 | return -1; |
| 175 | } else { |
| 176 | return _rx_buffer[_rx_buffer_tail]; |
| 177 | } |
| 178 | } |
| 179 |
|
| 180 | int HardwareSerial::read(void) |
| 181 | { |
| 182 | // if the head isn't ahead of the tail, we don't have any characters |
| 183 | if (_rx_buffer_head == _rx_buffer_tail) { |
| 184 | return -1; |
| 185 | } else { |
| 186 | unsigned char c = _rx_buffer[_rx_buffer_tail]; |
| 187 | _rx_buffer_tail = (rx_buffer_index_t)(_rx_buffer_tail + 1) % SERIAL_RX_BUFFER_SIZE; |
| 188 | return c; |
| 189 | } |
| 190 | } |
| 191 |
|
| 192 | int HardwareSerial::availableForWrite(void) |
| 193 | { |
| 194 | tx_buffer_index_t head; |
| 195 | tx_buffer_index_t tail; |
| 196 |
|
| 197 | TX_BUFFER_ATOMIC { |
| 198 | head = _tx_buffer_head; |
| 199 | tail = _tx_buffer_tail; |
| 200 | } |
| 201 | if (head >= tail) return SERIAL_TX_BUFFER_SIZE - 1 - head + tail; |
| 202 | return tail - head - 1; |
| 203 | } |
| 204 |
|
| 205 | void HardwareSerial::flush() |
| 206 | { |
| 207 | // If we have never written a byte, no need to flush. This special |
| 208 | // case is needed since there is no way to force the TXC (transmit |
| 209 | // complete) bit to 1 during initialization |
| 210 | if (!_written) |
| 211 | return; |
| 212 |
|
| 213 | while (bit_is_set(*_ucsrb, UDRIE0) || bit_is_clear(*_ucsra, TXC0)) { |
| 214 | if (bit_is_clear(SREG, SREG_I) && bit_is_set(*_ucsrb, UDRIE0)) |
| 215 | // Interrupts are globally disabled, but the DR empty |
| 216 | // interrupt should be enabled, so poll the DR empty flag to |
| 217 | // prevent deadlock |
| 218 | if (bit_is_set(*_ucsra, UDRE0)) |
| 219 | _tx_udr_empty_irq(); |
| 220 | } |
| 221 | // If we get here, nothing is queued anymore (DRIE is disabled) and |
| 222 | // the hardware finished tranmission (TXC is set). |
| 223 | } |
| 224 |
|
| 225 | size_t HardwareSerial::write(uint8_t c) |
| 226 | { |
| 227 | _written = true; |
| 228 | // If the buffer and the data register is empty, just write the byte |
| 229 | // to the data register and be done. This shortcut helps |
| 230 | // significantly improve the effective datarate at high (> |
| 231 | // 500kbit/s) bitrates, where interrupt overhead becomes a slowdown. |
| 232 | if (_tx_buffer_head == _tx_buffer_tail && bit_is_set(*_ucsra, UDRE0)) { |
| 233 | // If TXC is cleared before writing UDR and the previous byte |
| 234 | // completes before writing to UDR, TXC will be set but a byte |
| 235 | // is still being transmitted causing flush() to return too soon. |
| 236 | // So writing UDR must happen first. |
| 237 | // Writing UDR and clearing TC must be done atomically, otherwise |
| 238 | // interrupts might delay the TXC clear so the byte written to UDR |
| 239 | // is transmitted (setting TXC) before clearing TXC. Then TXC will |
| 240 | // be cleared when no bytes are left, causing flush() to hang |
| 241 | ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { |
| 242 | *_udr = c; |
| 243 | #ifdef MPCM0 |
| 244 | *_ucsra = ((*_ucsra) & ((1 << U2X0) | (1 << MPCM0))) | (1 << TXC0); |
| 245 | #else |
| 246 | *_ucsra = ((*_ucsra) & ((1 << U2X0) | (1 << TXC0))); |
| 247 | #endif |
| 248 | } |
| 249 | return 1; |
| 250 | } |
| 251 | tx_buffer_index_t i = (_tx_buffer_head + 1) % SERIAL_TX_BUFFER_SIZE; |
| 252 | |
| 253 | // If the output buffer is full, there's nothing for it other than to |
| 254 | // wait for the interrupt handler to empty it a bit |
| 255 | while (i == _tx_buffer_tail) { |
| 256 | if (bit_is_clear(SREG, SREG_I)) { |
| 257 | // Interrupts are disabled, so we'll have to poll the data |
| 258 | // register empty flag ourselves. If it is set, pretend an |
| 259 | // interrupt has happened and call the handler to free up |
| 260 | // space for us. |
| 261 | if(bit_is_set(*_ucsra, UDRE0)) |
| 262 | _tx_udr_empty_irq(); |
| 263 | } else { |
| 264 | // nop, the interrupt handler will free up space for us |
| 265 | } |
| 266 | } |
| 267 |
|
| 268 | _tx_buffer[_tx_buffer_head] = c; |
| 269 |
|
| 270 | // make atomic to prevent execution of ISR between setting the |
| 271 | // head pointer and setting the interrupt flag resulting in buffer |
| 272 | // retransmission |
| 273 | ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { |
| 274 | _tx_buffer_head = i; |
| 275 | sbi(*_ucsrb, UDRIE0); |
| 276 | } |
| 277 | |
| 278 | return 1; |
| 279 | } |
| 280 |
|
| 281 | #endif // whole file |
| 282 |
|